Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (eBook)

Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (eBook)

Xuefeng Liu
Xuefeng Liu
Prezzo:
€ 51,47
Compra EPUB
Prezzo:
€ 51,47
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: en
Editore: Springer
Collana: SpringerBriefs in Mathematics
Codice EAN: 9789819735778
Anno pubblicazione: 2024
Scopri QUI come leggere i tuoi eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

This monograph presents a study of newly developed guaranteed computational methodologies for eigenvalue problems of self-adjoint differential operators. It focuses on deriving explicit lower and upper bounds for eigenvalues, as well as explicit estimations for eigenfunction approximations. Such explicit error estimations rely on the finite element method (FEM) along with a new theory of explicit quantitative error estimation, diverging from traditional studies that primarily focus on qualitative results. To achieve quantitative error estimation, the monograph begins with an extensive analysis of the hypercircle method, that is, the Prager–Synge theorem. It introduces a novel a priori error estimation technique based on the hypercircle method. This facilitates the explicit estimation of Galerkin projection errors for equations such as Poisson's and Stokes', which are crucial for obtaining lower eigenvalue bounds via conforming FEMs. A thorough exploration of the fundamental theory of projection-based explicit lower eigenvalue bounds under a general setting of eigenvalue problems is also offered. This theory is extensively detailed when applied to model eigenvalue problems associated with the Laplace, biharmonic, Stokes, and Steklov differential operators, which are solved by either conforming or non-conforming FEMs. Moreover, there is a detailed discussion on the Lehmann–Goerisch theorem for the purpose of high-precision eigenvalue bounds, showing its relationship with previously established theorems, such as Lehmann–Maehly's method and Kato's bound. The implementation details of this theorem with FEMs, a topic rarely covered in existing literature, are also clarified. Lastly, the monograph introduces three new algorithms to estimate eigenfunction approximation errors, revealing the potency of classical theorems. Algorithm I extends Birkhoff’s result that works for simple eigenvalues to handle clustered eigenvalues, while Algorithm II generalizes the Davis–Kahan theorem, initially designed for strongly formulated eigenvalue problems, to address weakly formulated eigenvalue problems. Algorithm III utilizes the explicit Galerkin projection error estimation to efficiently handle Galerkin projection-based approximations.