|
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition) (eBook)
|
|
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition) (eBook)
|
|
|
|
Prezzo:
€ 8,49
Compra EPUB
|
Prezzo:
€ 8,49
Compra EPUB
|
|
Formato :
|
EPUB |
Cloud:
|
Sì Scopri di più |
Compatibilità:
|
Tutti i dispositivi
|
Lingua:
|
en |
Editore:
|
BPB Publications |
Codice EAN:
|
9789391392352 |
Anno pubblicazione:
|
2021 |
Scopri QUI come leggere i tuoi eBook
|
|
 | Abbonati a Kobo Plus per avere accesso illimitato a migliaia di eBook |
|
Note legali
NOTE LEGALI
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.
Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.
Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.
Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.
Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.
Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi
|
Descrizione
Concepts of Machine Learning with Practical Approaches.
KEY FEATURES
? Includes real-scenario examples to explain the working of Machine Learning algorithms.
? Includes graphical and statistical representation to simplify modeling Machine Learning and Neural Networks.
? Full of Python codes, numerous exercises, and model question papers for data science students.
DESCRIPTION
The book offers the readers the fundamental concepts of Machine Learning techniques in a user-friendly language. The book aims to give in-depth knowledge of the different Machine Learning (ML) algorithms and the practical implementation of the various ML approaches.
This book covers different Supervised Machine Learning algorithms such as Linear Regression Model, Naïve Bayes classifier Decision Tree, K-nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithms, Unsupervised Machine Learning algorithms such as k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model and Reinforcement Learning algorithm such as Markov Decision Process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA).
WHAT YOU WILL LEARN
? Perform feature extraction and feature selection techniques.
? Learn to select the best Machine Learning algorithm for a given problem.
? Get a stronghold in using popular Python libraries like Scikit-learn, pandas, and matplotlib.
? Practice how to implement different types of Machine Learning techniques.
WHO THIS BOOK IS FOR
This book is designed for data science and analytics students, academicians, and researchers who want to explore the concepts of machine learning and practice the understanding of real cases. Knowing basic statistical and programming concepts would be good, although not mandatory.
AUTHOR BIO
Dr Ruchi Doshi has more than 14 years of academic, research, and software development experience in Asia and Africa. Currently, she is working as a research supervisor at the Azteca University, Mexico, and as an adjunct faculty at the Jyoti Vidyapeeth Women's University, Jaipur, Rajasthan, India.
Kamal Kant Hiran works as an Assistant Professor, School of Engineering at the Sir Padampat Singhania University (SPSU), Udaipur, Rajasthan, India as well as a Research Fellow at the Aalborg University, Copenhagen, Denmark. He is a Gold Medalist in M.Tech. (Hons.). He has more than 16 years of experience as an academic and researcher in Asia, Africa, and Europe.
Ritesh Kumar Jain works as an Assistant Professor, at the Geetanjali Institute of Technical Studies, (GITS), Udaipur, Rajasthan, India. He has more than 15 years of teaching and research experience. He has completed his BE and MTech. He has worked as an Assistant Professor and Head of the Department at S. S. College of Engineering. Udaipur; Assistant Professor at Sobhasaria Engineering College, Sikar; Lecturer at the Institute of Technology & Management, Bhilwara.
Dr. Kamlesh Lakhwani works as an Associate Professor, in Computer Science & Engineering at JECRC University Jaipur, Rajasthan, India. He has an excellent academic background and a rich experience of 15 years as an academician and researcher in Asia. As a prolific writer in the arena of Computer Sciences and Engineering, he penned down several learning materials on C, C++, Multimedia Systems, Cloud Computing, IoT, Image Processing, etc.
|
|
|