Practical Deep Reinforcement Learning with Python: Concise Implementation of Algorithms, Simplified Maths, and Effective Use of TensorFlow and PyTorch (English Edition) (eBook)

Practical Deep Reinforcement Learning with Python: Concise Implementation of Algorithms, Simplified Maths, and Effective Use of TensorFlow and PyTorch (English Edition) (eBook)

Ivan Gridin
Ivan Gridin
Prezzo:
€ 13,99
Compra EPUB
Prezzo:
€ 13,99
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Compatibilità: Tutti i dispositivi
Lingua: en
Editore: BPB Publications
Codice EAN: 9789355512055
Anno pubblicazione: 2022
Scopri QUI come leggere i tuoi eBook
Abbonati a Kobo Plus per avere accesso illimitato a migliaia di eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

Introducing Practical Smart Agents Development using Python, PyTorch, and TensorFlow KEY FEATURES ? Exposure to well-known RL techniques, including Monte-Carlo, Deep Q-Learning, Policy Gradient, and Actor-Critical. ? Hands-on experience with TensorFlow and PyTorch on Reinforcement Learning projects. ? Everything is concise, up-to-date, and visually explained with simplified mathematics. DESCRIPTION Reinforcement learning is a fascinating branch of AI that differs from standard machine learning in several ways. Adaptation and learning in an unpredictable environment is the part of this project. There are numerous real-world applications for reinforcement learning these days, including medical, gambling, human imitation activity, and robotics. This book introduces readers to reinforcement learning from a pragmatic point of view. The book does involve mathematics, but it does not attempt to overburden the reader, who is a beginner in the field of reinforcement learning. The book brings a lot of innovative methods to the reader's attention in much practical learning, including Monte-Carlo, Deep Q-Learning, Policy Gradient, and Actor-Critical methods. While you understand these techniques in detail, the book also provides a real implementation of these methods and techniques using the power of TensorFlow and PyTorch. The book covers some enticing projects that show the power of reinforcement learning, and not to mention that everything is concise, up-to-date, and visually explained. After finishing this book, the reader will have a thorough, intuitive understanding of modern reinforcement learning and its applications, which will tremendously aid them in delving into the interesting field of reinforcement learning. WHAT YOU WILL LEARN ? Familiarize yourself with the fundamentals of Reinforcement Learning and Deep Reinforcement Learning. ? Make use of Python and Gym framework to model an external environment. ? Apply classical Q-learning, Monte Carlo, Policy Gradient, and Thompson sampling techniques. ? Explore TensorFlow and PyTorch to practice the fundamentals of deep reinforcement learning. ? Design a smart agent for a particular problem using a specific technique. WHO THIS BOOK IS FOR This book is for machine learning engineers, deep learning fanatics, AI software developers, data scientists, and other data professionals eager to learn and apply Reinforcement Learning to ongoing projects. No specialized knowledge of machine learning is necessary; however, proficiency in Python is desired. AUTHOR BIO Ivan Gridin is a researcher, author, developer, and artificial intelligence expert who has worked on distributive high-load systems and implemented different machine learning approaches in practice. One of the primary areas of his research is the design and development of predictive time series models. Ivan has fundamental math skills in random process theory, time series analysis, machine learning, reinforcement learning, neural architecture search, and optimization. He has published books on genetic algorithms and time series forecasting. He is a loving husband and father and collector of old math books.