Data Privacy in der Praxis (eBook)

Data Privacy in der Praxis (eBook)

Katharine Jarmul
Katharine Jarmul
Prezzo:
€ 49,90
Compra EPUB
Prezzo:
€ 49,90
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: TED
Traduttore: Fraaß Marcus
Editore: O'Reilly
Collana: Animals
Codice EAN: 9783960108177
Anno pubblicazione: 2024
Scopri QUI come leggere i tuoi eBook
Abbonati a Kobo Plus per avere accesso illimitato a migliaia di eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

Bewährte Praktiken zur Verbesserung von Privacy für Daten aus technischer, organisatorischer und rechtlicher Sicht Das Buch zeigt, wie Sie dafür sorgen, dass die Daten in Ihrem Projekt privat, anonymisiert und sicher sind Auf den europäischen Markt zugeschnitten, behandelt die DSGVO eingehend Umfasst auch Themen wie ChatGPT und Deep Fakes Katharine Jarmul ist eine renommierte Privacy-Spezialistin. Sie arbeitet für Thoughtworks und ist Mitgründerin der PyLadies Die Anforderungen an den Datenschutz sind in Daten- und KI-Projekten heute so hoch wie nie. Die Integration von Privacy in Datensysteme ist jedoch nach wie vor komplex. Dieser Leitfaden vermittelt Data Scientists und Data Engineers ein grundlegendes Verständnis von modernen Datenschutzbausteinen wie Differential Privacy, Federated Learning und homomorpher Verschlüsselung. Privacy-Spezialistin Katharine Jarmul zeigt Best Practices und gibt praxiserprobte Ratschläge für den Einsatz bahnbrechender Technologien zur Verbesserung des Datenschutzes in Produktivsystemen. Das Buch beantwortet diese wichtigen Fragen: Wie wirken sich Datenschutzbestimmungen wie die DSGVO oder der California Consumer Privacy Act (CCPA) auf meine Datenworkflows und Data-Science- Anwendungen aus? Was ist unter »anonymisierten Daten« zu verstehen und wie lassen sich Daten anonymisieren? Wie funktionieren Federated Learning und Federated Analysis? Homomorphe Verschlüsselung klingt großartig – doch ist sie auch anwendungsreif? Wie kann ich datenschutzwahrende Technologien und Verfahren miteinander vergleichen, um die für mich beste Wahl zu treffen? Welche Open-Source-Bibliotheken stehen hierfür zur Verfügung? Wie stelle ich sicher, dass meine Data-Science-Projekte von vornherein geschützt und sicher sind? Wie kann ich mit den für Governance und Informationssicherheit verantwortlichen Teams zusammenarbeiten, um interne Richtlinien in geeigneter Weise umzusetzen?