Application of Genetic Algorithm in Worm Gear Mechanism (eBook)

Application of Genetic Algorithm in Worm Gear Mechanism (eBook)

Durgesh Verma
Durgesh Verma
Prezzo:
€ 17,99
Compra EPUB
Prezzo:
€ 17,99
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: Inglese
Editore: GRIN Verlag
Codice EAN: 9783656359241
Anno pubblicazione: 2013
Scopri QUI come leggere i tuoi eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

Master's Thesis from the year 2010 in the subject Mathematics - Applied Mathematics, grade: 85%, Priyadarshini College of Engineering, Nagpur, course: M-TECH., language: English, abstract: In this study, a foundation and solution technique using Genetic Algorithm (GA) for design optimization of worm gear mechanism is presented for the minimization of power-loss of worm gear mechanism with respect to specified set of constraints. Number of gear tooth and helix (thread) angle of worm are used as design variables and linear pressure, bending strength of tooth and deformation of worm are set as constraints. The GA in Non-Traditional method is useful and applicable for optimization of mechanical component design. The GA is an efficient search method which is inspired from natural genetics selection process to explore a given search space. In this work, GA is applied to minimize the power loss of worm gear which is subjected to constraints linear pressure, bending strength of tooth and deformation of worm. Up to now, many numerical optimization algorithms such as GA, Simulated Annealing, Ant-Colony Optimization, Neural Network have been developed and used for design optimization of engineering problems to find optimum design. Solving engineering problems can be complex and a time consuming process when there are large numbers of design variables and constraints. Hence, there is a need for more efficient and reliable algorithms that solve such problems. The improvement of faster computer has given chance for more robust and efficient optimization methods. Genetic algorithm is one of these methods. The genetic algorithm is a search technique based on the idea of natural selection and genetics.