Zahlen, Metaphern, Konzepte – Zur Struktur mathematischer Aporien am Beispiel Zenons (eBook)

Zahlen, Metaphern, Konzepte – Zur Struktur mathematischer Aporien am Beispiel Zenons (eBook)

Patrick Kühnel
Patrick Kühnel
Prezzo:
€ 12,99
Compra EPUB
Prezzo:
€ 12,99
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: TED
Editore: GRIN Verlag
Codice EAN: 9783656340577
Anno pubblicazione: 2012
Scopri QUI come leggere i tuoi eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

Studienarbeit aus dem Jahr 2012 im Fachbereich Mathematik - Analysis, Beijing University, Sprache: Deutsch, Abstract: Betrachtet man das zentrale Konzept der Analysis, das Infinitesimal, so fällt einem ein eigentümlicher Widerspruch in dessen Konzeption und Geschichte auf: Zum einen bemerkte schon Aristoteles den Widerspruch zwischen der Notwendigkeit der Existenz eines Begriffes von Unendlichkeit (der für die Konstruierbarkeit eines unendlich Kleinen Voraussetzung ist) zum anderen widerspricht das Konzept des Unendlichen jeder empirischen Plausibilität und Operationalisierbarkeit durch den Alltagsverstand. Aristoteles, dessen von Pythagoras inspirierten Betrachtungen zu Zeit und Raum die philosophischen Konzeptionen bis weit in die Neuzeit hinein prägten, versucht diesen Widerspruch durch die Feststellung zu lösen, dass es sich bei dem Unendlichen um reine Potentialität handele, dass also ein aktual Unendliches nicht existieren könne worauf er mehrfach im dritten Buch der Physik hinweist. Diese Erklärung ist oft kritisiert worden, da das eigentliche Problem nur verschoben wird: Von der Frage nach dem Unendlichen auf die Frage nach dem Wesen, d.h. der Frage, ob die Dinge eine Essenz haben, die jenseits deren Erkennbarkeit postulierbar wäre. Da das griechische mathematische Denken seinen Anker in der geometrischen Anschauung hatte ist es nicht verwunderlich, dass das Konzept unendlicher Teilbarkeit zu einem Konflikt mit dem Grundverständnis über das Wesen mathematischer Aussagen führen musste. Dies jedoch für zu der grundsätzlichen Frage, inwieweit diejenigen Konzepte, die analytischem Denken zugrunde liegen und damit Erkenntnisse - insbesondere mathematische - erst ermöglichen gleichzeitig auch deren Reichweite und Tiefe begrenzen. Zu Klärung dieser Frage ist es freilich notwendig, einen Blick in die Genese mathematischer Konzepte zu werfen und speziell deren metaphorische Ebene zu beleuchten. Dies soll im vorliegenden Beitrag exemplarisch an den Zenonschen Paradoxien bzw. deren Lösungsansätzen versucht werden. Es wird mit Hilfe metapherntheoretischer und elementarmathematischer Überlegungen versucht nachzuzeichnen, wie die scheinbaren Paradoxien sich als Folge eines undifferenzierten Unendlichkeitsbegriffs ergeben, wobei letzterer sich wiederum direkt auf ein unzureichend abstraktes Zahlkonzept zurückführen lässt.