Maschinelles Lernen zur Hautkrebsvorhersage (eBook)

Maschinelles Lernen zur Hautkrebsvorhersage (eBook)

Daniel Fischer
Daniel Fischer
Prezzo:
€ 29,99
Compra EPUB
Prezzo:
€ 29,99
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: TED
Editore: GRIN Verlag
Codice EAN: 9783656127598
Anno pubblicazione: 2012
Scopri QUI come leggere i tuoi eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

Bachelorarbeit aus dem Jahr 2011 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1,3, Technische Universität Darmstadt, Sprache: Deutsch, Abstract: „Von der ursprünglichen Wortbedeutung her (dia: durch, hindurch, auseinander, gnosis: Erkenntnis) ist Diagnostik Erkenntnisgewinnung zur Unterscheidung zwischen Objekten. […]“ (Hossiep & Wottawa, 1993) Gemäß dieser Definition lassen sich große Parallelen zwischen einer medizinischen Diagnose und verbreiteten Methoden der Informatik ziehen. So erfolgt bspw. eine computergestützte „Diagnose“, bzw. eine Einstufung einer E-Mail automatisch durch den Spam-Filter, der anhand von festgelegten Charakteristika, wie etwa der Anzahl der Rechtschreibfehler, die E-Mail als (Spam-)Mail klassifiziert. Methoden wie diese entstammen allgemein dem Bereich des Maschinellen Lernens und finden in der heutigen Zeit in vielen Softwaresystemen Anwendung (Intrusion Detection, Anti-Viren Programme etc.). Maschinelles Lernen bezeichnet allgemein das Anwenden formaler Strukturen (Maschinen) zur Deduktion und Induktion. Im Gegensatz dazu beschäftigt sich das Data Mining mit der Generierung von Wissen aus Datensätzen und verwendet dafür Methoden des Maschinellen Lernens (Clarke et al., 2009). Dazu werden Algorithmen eingesetzt, die Muster in meist sehr großen Datensätzen erkennen und diese in verschiedenen Darstellungsformen (Regeln, Bäumen etc.) als Domänen-Wissen manifestieren. Damit lässt sich bspw. das Kaufverhalten von Kunden analysieren und eine Aussage darüber treffen, zwischen welchen Produkten gewisse Synergieeffekte bestehen. Die wohl populärste Erkenntnis, die aus der Anwendung von Data Mining resultiert, ist eine Synergie zwischen Windeln und Bier an Wochenendtagen (Clarke et al., 2009). Gehetzte Väter kaufen laut dieser Auswertung Windeln und Bier oft zusammen. Oder es kann eine Aussage darüber getroffen werden, welche Eigenschaften einer menschlichen Embryonalzelle die bestmögliche Überlebenschance für eine künstliche Befruchtung gewährleisten (Witten & Frank, 2005). Einige Methoden des Data-Mining, die im weiteren Verlauf näher vorgestellt werden, werden in dieser wissenschaftlichen Arbeit auf den vorliegenden Datensatz angewandt. Ziel ist es dabei, Wissen über die unzureichend geklärte Entstehung von Hautkrebs und das damit verbundene Hautkrebsrisiko zu extrahieren, um eine Früherkennung und bestmögliche Heilungschance zu ermöglichen.