The Naïve Bayes Model for Unsupervised Word Sense Disambiguation (eBook)

The Naïve Bayes Model for Unsupervised Word Sense Disambiguation (eBook)

Florentina T. Hristea
Florentina T. Hristea
Prezzo:
€ 34,62
Compra EPUB
Prezzo:
€ 34,62
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: en
Editore: Springer
Collana: SpringerBriefs in Statistics
Codice EAN: 9783642336935
Anno pubblicazione: 2016
Scopri QUI come leggere i tuoi eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

This book presents recent advances (from 2008 to 2012) concerning use of the Naïve Bayes model in unsupervised word sense disambiguation (WSD). While WSD, in general, has a number of important applications in various fields of artificial intelligence (information retrieval, text processing, machine translation, message understanding, man-machine communication etc.), unsupervised WSD is considered important because it is language-independent and does not require previously annotated corpora. The Naïve Bayes model has been widely used in supervised WSD, but its use in unsupervised WSD has led to more modest disambiguation results and has been less frequent. It seems that the potential of this statistical model with respect to unsupervised WSD continues to remain insufficiently explored. The present book contends that the Naïve Bayes model needs to be fed knowledge in order to perform well as a clustering technique for unsupervised WSD and examines three entirely different sources of such knowledge for feature selection: WordNet, dependency relations and web N-grams. WSD with an underlying Naïve Bayes model is ultimately positioned on the border between unsupervised and knowledge-based techniques. The benefits of feeding knowledge (of various natures) to a knowledge-lean algorithm for unsupervised WSD that uses the Naïve Bayes model as clustering technique are clearly highlighted. The discussion shows that the Naïve Bayes model still holds promise for the open problem of unsupervised WSD.