q-Fractional Calculus and Equations (eBook)

q-Fractional Calculus and Equations (eBook)

H. Annaby MahmoudS. Mansour Zeinab
H. Annaby MahmoudS. Mansour Zeinab
Prezzo:
€ 46,79
Compra EPUB
Prezzo:
€ 46,79
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: Inglese
Editore: Springer
Collana: Lecture Notes in Mathematics
Codice EAN: 9783642308987
Anno pubblicazione: 2016
Scopri QUI come leggere i tuoi eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

This nine-chapter monograph introduces a rigorous investigation of *q-*difference operators in standard and fractional settings. It starts with elementary calculus of *q-*differences and integration of Jackson’s type before turning to *q-*difference equations. The existence and uniqueness theorems are derived using successive approximations, leading to systems of equations with retarded arguments. Regular *q-*Sturm–Liouville theory is also introduced; Green’s function is constructed and the eigenfunction expansion theorem is given. The monograph also discusses some integral equations of Volterra and Abel type, as introductory material for the study of fractional q-calculi. Hence fractional *q-*calculi of the types Riemann–Liouville; Grünwald–Letnikov; Caputo; Erdélyi–Kober and Weyl are defined analytically. Fractional *q-*Leibniz rules with applications in *q-*series are also obtained with rigorous proofs of the formal results of Al-Salam-Verma, which remained unproved for decades. In working towards the investigation of *q-*fractional difference equations; families of *q-*Mittag-Leffler functions are defined and their properties are investigated, especially the *q-*Mellin–Barnes integral and Hankel contour integral representation of the *q-*Mittag-Leffler functions under consideration, the distribution, asymptotic and reality of their zeros, establishing *q-*counterparts of Wiman’s results. Fractional *q-*difference equations are studied; existence and uniqueness theorems are given and classes of Cauchy-type problems are completely solved in terms of families of *q-*Mittag-Leffler functions. Among many *q-*analogs of classical results and concepts, *q-*Laplace, *q-Mellin and q2-*Fourier transforms are studied and their applications are investigated.