Multiple Non-Linear Regression Analysis (eBook)

Multiple Non-Linear Regression Analysis (eBook)

Markus Schief
Markus Schief
Prezzo:
€ 15,99
Compra EPUB
Prezzo:
€ 15,99
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: Inglese
Editore: GRIN Verlag
Codice EAN: 9783640237524
Anno pubblicazione: 2009
Scopri QUI come leggere i tuoi eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

Project Report from the year 2008 in the subject Mathematics - Statistics, grade: A, University of West Florida, language: English, abstract: Statistical analyses are very important today. In many areas like science or economics, for example, statistical analyses are used to support assumptions and to predict future data. With regards to business administration, modern business statistics can be used to influence decision making in finance, marketing or production, for instance. The scope of the current project is to analyze a data set “Ibell” of phone calls and to predict future quantity of phone calls based on a regression analysis. The “Ibell” data set is related to the U.S. based company International Bell Communications (Ibell) that owns and operates direct routes through-out the world (International Bell Communications, 2008). Four variables are provided in the “Ibell” data set; three independent variables and one dependent (also called response) variable. The independent respectively predictor variables are “Quarter”, “Price” (price charged for long-distance calls in US$), and “Perinc” (reflecting the local average personal income in US$). The dependent variable is “Quantity” – the number of long-distance phone calls. The present data set was provided by the professor of the QMB class. Thus, the data has not been personally collected and hence the author of this report can not personally guarantee for the quality of the data set. However, the predictor variables of “Quarter”, “Price”, and “Perinc” seem fairly reasonable influences on the number of long-distance calls, in general. There are three major parts in this report. First, a general description of the data set will be presented, including the sort of variables, the characteristics of the observations, and the peculiarities in the distribution. Second, regression analyses estimate the validity of a modeled relationship between the dependent and the independent variables. Finally, the researcher will predict future quantity of long-distance calls for the upcoming four quarters in order to support International Bell Communications in network capacity planning as well as in revenue forecasts, for instance.