Konvergenz von Krylov-Verfahren für Eigenwertprobleme (eBook)

Konvergenz von Krylov-Verfahren für Eigenwertprobleme (eBook)

Alexander Weiß
Alexander Weiß
Prezzo:
€ 29,99
Compra EPUB
Prezzo:
€ 29,99
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: Tedesco
Editore: GRIN Verlag
Codice EAN: 9783638900836
Anno pubblicazione: 2008
Scopri QUI come leggere i tuoi eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

Diplomarbeit aus dem Jahr 1998 im Fachbereich Mathematik - Angewandte Mathematik, Note: sehr gut, Eberhard-Karls-Universität Tübingen (Mathematische Fakultät), Sprache: Deutsch, Abstract: Eigenwerte von Matrizen zu berechnen ist ein Problem, das häufig in naturwissenschaftlich-technischen Anwendungen auftritt. In der Theorie kann man mit Hilfe von Eigenwerten unter anderem Aussagen über die Stabilität von dynamischen Systemen machen. Außerdem spielen sie in der Stochastik, z.B. bei Markov-Ketten (Übergangswahrscheinlichkeiten, Brownsche Bewegung), eine wichtige Rolle. Nun einige Beispiele aus praktischen Anwendungen: - in der Physik bei Schwingungsproblemen - in der Chemie bei Verbrennungsprozessen - in der Makroökonomie bei der Überprüfung von Marktstabilität - in der Biologie bei Populationsmodellen Die hierbei auftretenden Fragen bzw. Aufgaben sind z.B.: Wie berechnet man - alle Eigenwerte und/oder alle Eigenvektoren für eine kleine Matrix (bis 10^3*10^3)? - einen Eigenwert und/oder den zugehörigen Eigenvektor (betragsgrößter, -kleinster, mit größtem Realteil,...)? - einige wenige Eigenwerte und gegebenenfalls die zugehörigen Eigenvektoren? - einen Eigenvektor zu einem bekannten Eigenwert (Markov-Ketten) Bei kleinen Matrizen, das heißt Matrizen der Größenordnung bis etwa 10^3*10^3, können diese mittels Householder-Transformationen auf Hessenberg-Form bzw. im hermiteschen Fall auf Tridiagonal-Form zurückgeführt werden. Dann kann man z.B. mit der QR-Zerlegung die gewünschten Eigenwerte und/oder die zugehörigen Eigenvektoren berechnen. In dieser Arbeit sollen Matrizen in der Größenordnung 10^3*10^3 bis 10^6*10^6 betrachtet werden. Da die erwähnten Standard-Algorithmen einen zu hohen Rechen- und Speicheraufwand verursachen, versucht man mittels Projektionsverfahren dieses große Problem auf ein kleines zu reduzieren, um darauf die Standardtechniken wieder anwenden und somit einen Teil des Spektrums approximieren zu können. Diese Arbeit hat die "Konvergenz von Krylov-Verfahren für Eigenwertprobleme" zum Thema.