Speeding-Up Radio-Frequency Integrated Circuit Sizing with Neural Networks (eBook)

Speeding-Up Radio-Frequency Integrated Circuit Sizing with Neural Networks (eBook)

Prezzo:
€ 46,79
Compra EPUB
Prezzo:
€ 46,79
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: en
Editore: Springer
Collana: SpringerBriefs in Applied Sciences and Technology
Codice EAN: 9783031250996
Anno pubblicazione: 2023
Scopri QUI come leggere i tuoi eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

In this book, innovative research using artificial neural networks (ANNs) is conducted to automate the sizing task of RF IC design, which is used in two different steps of the automatic design process. The advances in telecommunications, such as the 5th generation broadband or 5G for short, open doors to advances in areas such as health care, education, resource management, transportation, agriculture and many other areas. Consequently, there is high pressure in today’s market for significant communication rates, extensive bandwidths and ultralow-power consumption. This is where radiofrequency (RF) integrated circuits (ICs) come in hand, playing a crucial role. This demand stresses out the problem which resides in the remarkable difficulty of RF IC design in deep nanometric integration technologies due to their high complexity and stringent performances. Given the economic pressure for high quality yet cheap electronics and challenging time-to-market constraints, there is an urgent need for electronic design automation (EDA) tools to increase the RF designers’ productivity and improve the quality of resulting ICs. In the last years, the automatic sizing of RF IC blocks in deep nanometer technologies has moved toward process, voltage and temperature (PVT)-inclusive optimizations to ensure their robustness. Each sizing solution is exhaustively simulated in a set of PVT corners, thus pushing modern workstations’ capabilities to their limits. Standard ANNs applications usually exploit the model’s capability of describing a complex, harder to describe, relation between input and target data. For that purpose, ANNs are a mechanism to bypass the process of describing the complex underlying relations between data by feeding it a significant number of previously acquired input/output data pairs that the model attempts to copy. Here, and firstly, the ANNs disrupt from the most recent trials of replacing the simulator in the simulation-based sizing with a machine/deep learning model, by proposing two different ANNs, the first classifies the convergence of the circuit for nominal and PVT corners, and the second predicts the oscillating frequencies for each case. The convergence classifier (CCANN) and frequency guess predictor (FGPANN) are seamlessly integrated into the simulation-based sizing loop, accelerating the overall optimization process. Secondly, a PVT regressor that inputs the circuit’s sizing and the nominal performances to estimate the PVT corner performances via multiple parallel artificial neural networks is proposed. Two control phases prevent the optimization process from being misled by inaccurate performance estimates. As such, this book details the optimal description of the input/output data relation that should be fulfilled. The developed description is mainly reflected in two of the system’s characteristics, the shape of the input data and its incorporation in the sizing optimization loop. An optimal description of thesecomponents should be such that the model should produce output data that fulfills the desired relation for the given training data once fully trained. Additionally, the model should be capable of efficiently generalizing the acquired knowledge in newer examples, i.e., never-seen input circuit topologies.