Machine Learning Interview Questions (eBook)

Machine Learning Interview Questions (eBook)

Tech Interviews
Tech Interviews
Prezzo:
€ 4,99
Compra EPUB
Prezzo:
€ 4,99
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Compatibilità: Tutti i dispositivi
Lingua: en
Editore: Tech Interviews
Codice EAN: 9781386786269
Anno pubblicazione: 2020
Scopri QUI come leggere i tuoi eBook
Abbonati a Kobo Plus per avere accesso illimitato a migliaia di eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

Machine Learning Interview Questions & Answers Machine Learning is a newly emerging term in IT field, which is a subset of Artificial Intelligence. Machine learning focuses on the development of computer programs that can access data and use it learn for themselves. It can help to detect fraudulent transactions, online recommendation, sentiments of social media content. It can even help out to decide which is the best place to open up a restaurant, hotel etc. This workbook contains extensive set of Machine Learning questions and answers that can help clear your understanding on the topic and also help in responding to questions posed to an interviewee. With the difficulty level of questions ranging from low to high, we intend to cater to the requirements of masses. This guide will benefit: • A beginner who has never faced any Machine Learning / Data Science interview • Anyone who wants a brief on Machine Learning • Professional who want answers with examples and explanation • One who don't know what "They" really want to hear…. How should you read this book? You have to first do a slow reading of all the questions in this book. Once you go through them in the first pass, mark the questions that you could not answer by yourself. Then, in second pass go through only the difficult questions. After going through this book 2-3 times, you will be well prepared to face a technical interview for a Machine Learning position. What are the sample questions in this book? List of assumptions in linear regression? What is normal distribution? Why do we care about it? How do we verify if a feature follows the normal distribution or not? What is SGD (Stochastic Gradient Descent? How is it different from gradient descent? What all metrics do we use for evaluating regression models? Share some examples where a false positive is important than a false negative? What is Precision-recall trade-off? Can we use L1 regularization for feature selection? What happens when we have correlated features in our data? How we can incorporate implicit feedback (clicks etc.) into recommender systems?