|
Fat-Tailed Distributions (eBook)
|
|
Fat-Tailed Distributions (eBook)
|
Misiewicz Jolanta, M. Cooke Roger, Nieboer Daan
|
Misiewicz Jolanta, M. Cooke Roger, Nieboer Daan
|
|
Prezzo:
€ 139,99
Compra EPUB
|
Prezzo:
€ 139,99
Compra EPUB
|
|
Formato :
|
EPUB |
Cloud:
|
Sì Scopri di più |
Lingua:
|
en |
Editore:
|
Wiley-ISTE |
Codice EAN:
|
9781119054122 |
Anno pubblicazione:
|
2016 |
Scopri QUI come leggere i tuoi eBook
|
|
|
Note legali
NOTE LEGALI
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.
Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.
Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.
Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.
Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.
Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi
|
Descrizione
This title is written for the numerate nonspecialist, and hopes to serve three purposes. First it gathers mathematical material from diverse but related fields of order statistics, records, extreme value theory, majorization, regular variation and subexponentiality. All of these are relevant for understanding fat tails, but they are not, to our knowledge, brought together in a single source for the target readership. Proofs that give insight are included, but for most fussy calculations the reader is referred to the excellent sources referenced in the text. Multivariate extremes are not treated. This allows us to present material spread over hundreds of pages in specialist texts in twenty pages. Chapter 5 develops new material on heavy tail diagnostics and gives more mathematical detail. Since variances and covariances may not exist for heavy tailed joint distributions, Chapter 6 reviews dependence concepts for certain classes of heavy tailed joint distributions, with a view to regressing heavy tailed variables.
Second, it presents a new measure of obesity. The most popular definitions in terms of regular variation and subexponentiality invoke putative properties that hold at infinity, and this complicates any empirical estimate. Each definition captures some but not all of the intuitions associated with tail heaviness. Chapter 5 studies two candidate indices of tail heaviness based on the tendency of the mean excess plot to collapse as data are aggregated. The probability that the largest value is more than twice the second largest has intuitive appeal but its estimator has very poor accuracy. The Obesity index is defined for a positive random variable X as:
Ob(X) = P (X1 +X4 > X2 +X3|X1 = X2 = X3 = X4), Xi independent copies of X.
For empirical distributions, obesity is defined by bootstrapping. This index reasonably captures intuitions of tail heaviness. Among its properties, if a > 1 then Ob(X) < ob(xa). however, it does not completely mimic the tail index of regularly varying distributions, or the extreme value index. a weibull distribution with shape 1/4 is more obese than a pareto distribution with tail index 1, even though this pareto has infinite mean and the weibull’s moments are all finite. chapter 5 explores properties of the obesity index.
third and most important, we hope to convince the reader that fat tail phenomena pose real problems; they are really out there and they seriously challenge our usual ways of thinking about historical averages, outliers, trends, regression coefficients and confidence bounds among many other things. data on flood insurance claims, crop loss claims, hospital discharge bills, precipitation and damages and fatalities from natural catastrophes drive this point home. while most fat tailed distributions are ”bad”, research in fat tails is one distribution whose tail will hopefully get fatter.
ob(xa).="" however,="" it="" does="" not="" completely="" mimic="" the="" tail="" index="" of="" regularly="" varying="" distributions,="" or="" the="" extreme="" value="" index.="" a="" weibull="" distribution="" with="" shape="" 1/4="" is="" more="" obese="" than="" a="" pareto="" distribution="" with="" tail="" index="" 1,="" even="" though="" this="" pareto="" has="" infinite="" mean="" and="" the="" weibull’s="" moments="" are="" all="" finite.="" chapter="" 5="" explores="" properties="" of="" the="" obesity="" index.="" third="" and="" most="" important,="" we="" hope="" to="" convince="" the="" reader="" that="" fat="" tail="" phenomena="" pose="" real="" problems;="" they="" are="" really="" out="" there="" and="" they="" seriously="" challenge="" our="" usual="" ways="" of="" thinking="" about="" historical="" averages,="" outliers,="" trends,="" regression="" coefficients="" and="" confidence="" bounds="" among="" many="" other="" things.="" data="" on="" flood="" insurance="" claims,="" crop="" loss="" claims,="" hospital="" discharge="" bills,="" precipitation="" and="" damages="" and="" fatalities="" from="" natural="" catastrophes="" drive="" this="" point="" home.="" while="" most="" fat="" tailed="" distributions="" are="" ”bad”,="" research="" in="" fat="" tails="" is="" one="" distribution="" whose="" tail="" will="" hopefully="" get="" fatter.=""> ob(xa). however, it does not completely mimic the tail index of regularly varying distributions, or the extreme value index. a weibull distribution with shape 1/4 is more obese than a pareto distribution with tail index 1, even though this pareto has infinite mean and the weibull’s moments are all finite. chapter 5 explores properties of the obesity index.
third and most important, we hope to convince the reader that fat tail phenomena pose real problems; they are really out there and they seriously challenge our usual ways of thinking about historical averages, outliers, trends, regression coefficients and confidence bounds among many other things. data on flood insurance claims, crop loss claims, hospital discharge bills, precipitation and damages and fatalities from natural catastrophes drive this point home. while most fat tailed distributions are ”bad”, research in fat tails is one distribution whose tail will hopefully get fatter.
>
|
|
|