Topic Modeling (eBook)

Topic Modeling (eBook)

Rao YanghuiLi Qing
Rao YanghuiLi Qing
Prezzo:
€ 159,11
Compra EPUB
Prezzo:
€ 159,11
Compra EPUB

Formato

:
EPUB
Cloud: Scopri di più
Lingua: Inglese
Editore: Springer
Collana: Machine Learning: Foundations, Methodologies, and Applications
Codice EAN: 9789819688531
Anno pubblicazione: 2025
Scopri QUI come leggere i tuoi eBook

Note legali

NOTE LEGALI

a) Garanzia legale, Pagamenti, Consegne, Diritto di recesso
b) Informazioni sul prezzo
Il prezzo barrato corrisponde al prezzo di vendita al pubblico al lordo di IVA e al netto delle spese di spedizione
Il prezzo barrato dei libri italiani corrisponde al prezzo di copertina.
I libri in inglese di Libraccio sono di provenienza americana o inglese.
Libraccio riceve quotidianamente i prodotti dagli USA e dalla Gran Bretagna, pagandone i costi di importazione, spedizione in Italia ecc.
Il prezzo in EURO è fissato da Libraccio e, in alcuni casi, può discostarsi leggermente dal cambio dollaro/euro o sterlina/euro del giorno. Il prezzo che pagherai sarà quello in EURO al momento della conferma dell'ordine.
In ogni caso potrai verificare la convenienza dei nostri prezzi rispetto ad altri siti italiani e, in moltissimi casi, anche rispetto all'acquisto su siti americani o inglesi.
c) Disponibilità
I termini relativi alla disponibilità dei prodotti sono indicati nelle Condizioni generali di vendita.

Disponibilità immediata
L'articolo è immediatamente disponibile presso Libraccio e saremo in grado di procedere con la spedizione entro un giorno lavorativo.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Disponibile in giorni o settimane (ad es. "3-5-10 giorni", "4-5 settimane" )
L'articolo sarà disponibile entro le tempistiche indicate, necessarie per ricevere l'articolo dai nostri fornitori e preparare la spedizione.
Nota: La disponibilità prevista fa riferimento a singole disponibilità.

Prenotazione libri scolastici
Il servizio ti permette di prenotare libri scolastici nuovi che risultano non disponibili al momento dell'acquisto.

Attualmente non disponibile
L'articolo sarà disponibile ma non sappiamo ancora quando. Inserisci la tua mail dalla scheda prodotto attivando il servizio Libraccio “avvisami” e sarai contattato quando sarà ordinabile.

Difficile reperibilità
Abbiamo dei problemi nel reperire il prodotto. Il fornitore non ci dà informazioni sulla sua reperibilità, ma se desideri comunque effettuare l'ordine, cercheremo di averlo nei tempi indicati. Se non sarà possibile, ti avvertiremo via e-mail e l'ordine verrà cancellato.
Chiudi

Descrizione

As a well-known text mining tool, topic modeling can effectively discover the latent semantic structure of text data. Extracting topics from documents is also one of the fundamental challenges in natural language processing. Although topic models have seen significant achievements over the past three decades, there remains a scarcity of methods that effectively model temporal aspect. Moreover, many contemporary topic models continue to grapple with the issue of noise contamination, particularly in social media data. This book presents several approaches designed to address these two limitations. Initially, traditional lifelong topic models aim to accumulate knowledge learned from experience for future task. However, the sequence of topics extracted by these methods may shift over time, leading to semantic misalignment between the topic representations across document streams. Such misalignment can degrade the performances of various downstream tasks, including online document classification and dynamic information retrieval at the topic level. Additionally, the challenge of coherent topic modeling is particularly relevant due to the noise and large scale of social media datasets. Messages on social media platforms often consists of only a few words, resulting in a lack of significant context. Models applied directly to this type of text frequently encounter the problem of feature sparsity, which can yield unsatisfactory outcomes. In the context of emotion detection, public emotions are known to fluctuate across different topics, and topics can evoke public emotion. Thus, there is a strong interconnection between topic discovery and emotion detection. Jointly modeling topics and emotions is a suitable strategy for these tasks. This book also examines the impact of topics on emotion detection and other related areas.